不妊症検査とは
妊娠率は、妊活を始めた最初の1ヵ月で約30%と最も高く、その後は徐々に低下し、1年後には約5%に減少します。累積妊娠率は6ヵ月後に約75%、1年後に約90%、2年後には約95%に達します。自然妊娠の可能性は年齢、妊娠歴、不妊期間、タイミング、体重変動、医学的要因などに影響されます。不妊症は、避妊なしで1年間定期的に性交しても妊娠しない場合に定義され、一般的には1年後に検査を行いますが、早期の検査が適切な場合もあります。
日本では、約6組に1組のカップルが不妊に悩み、その約半数が男性側に原因があります。男性不妊の原因には無精子症や乏精子症などがあり、遺伝的要因も増加しています。女性側も、妊娠が難しい生殖年齢女性が約10%おり、不妊症の原因の35%以上が女性側に関係しています。これには卵巣の発育や卵子の成熟、受精・着床能力などが含まれ、遺伝的な染色体異常や遺伝子変異も影響を与えます。
不妊症の遺伝子検査について
- 男性不妊症に関連する40の遺伝子における一塩基変異(SNV)、挿入や欠失(INDEL)、コピー数多型(CNV)を網羅的にスクリーニング
- 性染色体の異常やモザイク型異常も検出可能
『Gene-Checker Infertility (ジーン・チェッカーの遺伝性不妊検査)』は、治療計画や臨床管理を決定する上で重要です。治療の可否、健康リスクの有無を明らかにし、妊孕性の維持や補助生殖技術の適用確認に役立ちます。また、着床前診断や出生前診断など、遺伝リスク管理に必要な情報を提供し、遺伝カウンセリングや個別の臨床方針に貢献します。
不妊症検査とは
- 妊娠が遅れている方
- 性染色体異常による特有の症状がある方
- 月経不順や無月経の方(生理が来ない、不規則、または非常に軽い)
- 生殖補助医療(ART)治療を受ける予定の方
- 卵子提供の候補者の方
- ご家族に不妊の病歴がある方
- ご家族に脆弱X症候群の病歴がある方
- 肥満、るいそう、甲状腺疾患、または糖尿病をお持ちの方
- お子さまをお考えの方
- 妊娠に悩んでいるパートナーがいる方
- 精子数が少ない、または精子の形状や運動に異常がある方
- 精子提供を検討している方
『Gene-Checker Infertility (ジーン・チェッカーの遺伝性不妊検査)』は、女性不妊症に関連する55種類の遺伝子男性不妊症に関連する40種類の遺伝子について、一塩基変異(SNV)、挿入や欠失(INDEL)、およびコピー数多型(CNV)を網羅的にスクリーニングします。このパネルは、性染色体の全体的または部分的な異常やモザイク型の異常も検出可能です。
不妊症の遺伝子検査は、治療や臨床管理の方向性を決定する上で重要な役割を果たします。治療可能か不可逆的か、さらには健康にリスクがあるかを特定する助けとなり、妊孕性を維持するための早期介入や、補助生殖技術の適合性確認にも役立ちます。また、将来の子どもへの遺伝的リスクを管理するため、着床前診断や出生前診断といった予防的措置が可能になります。こうした情報は、適切な遺伝カウンセリングや個別化された臨床方針の策定に欠かせないものであり、精度の高い予後評価を提供します。
不妊症検査の流れ
- 検体の採取は、頬の内側を綿棒で軽くこすってください。
- キットに同封されている返信用封筒に検体を入れ、記載された住所宛に郵送をお願いします。
- 検査結果が出ましたら、Eメールにて結果をお知らせいたします。
結果についてご不明な点やご心配な点がございましたら、当クリニックの医師による診察の手配をさせていただきます。
本検査に関するお問い合わせはお電話(☎0120-915-967)またはメールで承ります。お気軽にご連絡ください。
弊社の『Gene-Checker Infertility (ジーン・チェッカーの遺伝性不妊検査)』を選ぶ理由
Gene-Checker Infertilityの便利さに関して3つのポイント
- 検査は自宅で完結します。病院へ行かなくても、Generio Storeから購入すれば、自宅で簡単に検査することができます。
- 結果に基づいて、遺伝子カウンセリングを受けることができます。購入者限定で、専門医師の診察もご利用いただけます。医師から検査結果に関する詳しい説明を受けることができ、陰性の方でもご相談が可能です。
- 検体返送料が無料です。返送に必要なものは、すべて検査キットに同梱されていますので、検査キットをご購入いただくだけですべて完結!
さらに詳しく
s/n | 男性不妊症遺伝子パネル | Associated Reproductive Genetic Condition | 関連する生殖遺伝病 | 文献 |
---|---|---|---|---|
1 | AIRE | Reduced Embryonic Development; Ovarian Follicular Depletion; Infiltration of Inflammatory T Cell in Ovaries | 胚発生の減少、卵巣卵胞の減少、卵巣への炎症性T細胞の浸潤 | Zou, X., Zhang, Y., Wang, X., Zhang, R., & Yang, W. (2021). The role of AIRE deficiency in infertility and its potential pathogenesis. Frontiers in Immunology, 12, 641164. |
2 | ANOS1 | Hypogonadotropic Hypogonadism 1 | 性腺刺激ホルモン分泌低下性性腺機能低下症1 | Parenti, Giancarlo, et al. “Variable Penetrance of Hypogonadism in a Sibship with Kallmann Syndrome Due to a Deletion of the KAL Gene.” American Journal of Medical Genetics, vol. 57, no. 3, July 1995, pp. 476–78. DOI.org (Crossref), https://doi.org/10.1002/ajmg.1320570323. |
3 | BMP15 | Ovarian Dysgenesis 2 | 卵巣形成不全2 | Dixit, Hridesh, et al. “Missense Mutations in the BMP15 Gene Are Associated with Ovarian Failure.” Human Genetics, vol. 119, no. 4, May 2006, pp. 408–15. DOI.org (Crossref), https://doi.org/10.1007/s00439-006-0150-0 |
4 | CAPN10 | Polycystic Ovarian Syndrome (PCOS) | 多嚢胞性卵巣症候群(PCOS) | Li, Y., Han, T., Wang, Y., Gao, J., Zhang, J., Wu, Y., & Luo, J. (2023). Association of Calpain10 polymorphisms with polycystic ovarian syndrome susceptibility: a systematic review and meta-analysis with trial sequential analysis. Frontiers in Genetics, 14, 1153960. |
5 | CHD7 | Charge Syndrome; Genital Hypoplasia | チャージ症候群、性器低形成 | Bergman, J. E. H., et al. “CHD7 Mutations and CHARGE Syndrome: The Clinical Implications of an Expanding Phenotype.” Journal of Medical Genetics, vol. 48, no. 5, May 2011, pp. 334–42. DOI.org (Crossref), https://doi.org/10.1136/jmg.2010.087106. |
6 | CYP11A1 | Congenital Adrenal Insuffiency With 46 | 46, XY性別逆転または46, XY性分化異常を伴う先天性副腎不全(CYP11A1欠損による副腎不全) | Hiort, Olaf, et al. “Homozygous Disruption of P450 Side-Chain Cleavage (CYP11A1) Is Associated with Prematurity, Complete 46,XY Sex Reversal, and Severe Adrenal Failure.” The Journal of Clinical Endocrinology & Metabolism, vol. 90, no. 1, Jan. 2005, pp. 538–41. DOI.org (Crossref), https://doi.org/10.1210/jc.2004-1059. |
7 | CYP17A1 | Congenital Adrenal Hyperplasia Due To 17-Alpha-Hydroxylase Deficiency | 17-α-ヒドロキシラーゼ欠損による先天性副腎過形成 | Rosa, S., et al. “Clinical, Genetic and Functional Characteristics of Three Novel CYP17A1 Mutations Causing Combined 17α-Hydroxylase/17,20-Lyase Deficiency.” Hormone Research in Paediatrics, vol. 73, no. 3, 2010, pp. 198–204. DOI.org (Crossref), https://doi.org/10.1159/000284362. |
8 | CYP19A1 | Aromatase Deficiency; Genital Ambiguity; Absent Pubertal Development | アロマターゼ欠損、性器不明瞭、思春期発達の欠如 | Lin, Lin, et al. “Variable Phenotypes Associated with Aromatase ( CYP19 ) Insufficiency in Humans.” The Journal of Clinical Endocrinology & Metabolism, vol. 92, no. 3, Mar. 2007, pp. 982–90. DOI.org (Crossref), https://doi.org/10.1210/jc.2006-1181. |
9 | DENND1A | Polycystic Ovary Syndrome (PCOS) | 多嚢胞性卵巣症候群(PCOS) | Samma, Z. H., Khan, H. N., Riffat, S., Ashraf, M., & Rehman, R. (2024). Unraveling the Genetic Associations of DENND1A (rs9696009) and ERBB4 (rs2178575) with Infertile Polycystic Ovary Syndrome Females in Pakistan. Biochemical Genetics, 62(3), 2148-2165. |
10 | DUSP6 | Hypogonadotropic Hypogonadism 19 | 性腺刺激ホルモン分泌低下性性腺機能低下症19 | Mkaouar, Rahma, et al. “Oligogenic Inheritance Underlying Incomplete Penetrance of PROKR2 Mutations in Hypogonadotropic Hypogonadism.” Frontiers in Genetics, vol. 12, Sept. 2021, p. 665174. DOI.org (Crossref), https://doi.org/10.3389/fgene.2021.665174 |
11 | EIF2B2 | Ovarioleukodystrophy | 卵巣白質ジストロフィー | Escobar-Pacheco, M., Luna-Álvarez, M., de Montellano, D. D. O., Yescas-Gómez, P., & Ramírez-García, M. Á. (2024). Ovarioleukodystrophy Due to EIF2B Genes: Systematic Review and Case Report. Cureus, 16(7). |
12 | EIF2B3 | Ovarioleukodystrophy | 卵巣白質ジストロフィー | Parihar, J., Vibha, D., Rajan, R., Pandit, A. K., Srivastava, A. K., & Prasad, K. (2022). Vanishing white matter disease presenting as dementia and infertility: a case report. Neurology: Genetics, 8(3), e643. |
13 | FEZF1 | Hypogonadotropic Hypogonadism 22 | 性腺刺激ホルモン分泌低下性性腺機能低下症22 | Kotan, L. Damla, et al. “Mutations in FEZF1 Cause Kallmann Syndrome.” The American Journal of Human Genetics, vol. 95, no. 3, Sept. 2014, pp. 326–31. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2014.08.006. |
14 | FGF8 | Hypogonadotropic Hypogonadism 6 | 性腺刺激ホルモン分泌低下性性腺機能低下症6 | Trarbach, Ericka B., et al. “Nonsense Mutations in FGF8 Gene Causing Different Degrees of Human Gonadotropin-Releasing Deficiency.” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 7, July 2010, pp. 3491–96. DOI.org (Crossref), https://doi.org/10.1210/jc.2010-0176. |
15 | FGF17 | Hypogonadotropic Hypogonadism 20 | 性腺刺激ホルモン分泌低下性性腺機能低下症20 | Amato, Lorena Guimaraes Lima, et al. “New Genetic Findings in a Large Cohort of Congenital Hypogonadotropic Hypogonadism.” European Journal of Endocrinology, vol. 181, no. 2, Aug. 2019, pp. 103–19. DOI.org (Crossref), https://doi.org/10.1530/EJE-18-0764. |
16 | FGFR1 | Hypogonadotropic Hypogonadism 2 | 性腺刺激ホルモン分泌低下性性腺機能低下症2 | Dodé, Catherine, et al. “Loss-of-Function Mutations in FGFR1 Cause Autosomal Dominant Kallmann Syndrome.” Nature Genetics, vol. 33, no. 4, Apr. 2003, pp. 463–65. DOI.org (Crossref), https://doi.org/10.1038/ng1122 |
17 | FIGLA | Premature Ovarian Failure 6 | 早発卵巣不全6 | Zhao, Han, et al. “Transcription Factor FIGLA Is Mutated in Patients with Premature Ovarian Failure.” The American Journal of Human Genetics, vol. 82, no. 6, June 2008, pp. 1342–48. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2008.04.018 |
18 | FLRT3 | Kallmann Syndrome | カルマン症候群 | Miraoui, Hichem, et al. “Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism.” The American Journal of Human Genetics, vol. 92, no. 5, May 2013, pp. 725–43. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2013.04.008. |
19 | FMR1 | Primary ovarian insufficiency (POI); Premature Ovarian Failure 1 | 原発性卵巣機能不全(POI)、早発卵巣不全1 | Barasoain, M., Barrenetxea, G., Huerta, I., Télez, M., Criado, B., & Arrieta, I. (2016). Study of the genetic etiology of primary ovarian insufficiency: FMR1 gene. Genes, 7(12), 123. |
20 | FOXL2 | Premature Ovarian Failure 3 | 早発卵巣不全3 | Bouilly, Justine, et al. “Identification of Multiple Gene Mutations Accounts for a New Genetic Architecture of Primary Ovarian Insufficiency.” The Journal of Clinical Endocrinology & Metabolism, vol. 101, no. 12, Dec. 2016, pp. 4541–50. DOI.org (Crossref), https://doi.org/10.1210/jc.2016-2152. |
21 | FSHB | Hypogonadotropic Hypogonadism 24 | 性腺刺激ホルモン分泌低下性性腺機能低下症24 | Kottler, Marie-Laure, et al. “A New FSHβ Mutation in a 29-Year-Old Woman with Primary Amenorrhea and Isolated FSH Deficiency: Functional Characterization and Ovarian Response to Human Recombinant FSH.” European Journal of Endocrinology, vol. 162, no. 3, Mar. 2010, pp. 633–41. DOI.org (Crossref), https://doi.org/10.1530/EJE-09-0648 |
22 | FSHR | Ovarian Dysgenesis 1; Ovarian Dysgenesis 1 | 卵巣形成不全1 | Desai, Swapna S., et al. “Mutations and Polymorphisms in FSH Receptor: Functional Implications in Human Reproduction.” REPRODUCTION, vol. 146, no. 6, Dec. 2013, pp. R235–48. DOI.org (Crossref), https://doi.org/10.1530/REP-13-0351. |
23 | GALT | Classic Galactosemia; Primary Ovarian Insufficiency (POI) | 古典的ガラクトース血症、原発性卵巣機能不全(POI) | Colhoun, Hugh-Owen, et al. “Fertility in Classical Galactosaemia, a Study of N-Glycan, Hormonal and Inflammatory Gene Interactions.” Orphanet Journal of Rare Diseases, vol. 13, no. 1, Dec. 2018, p. 164. DOI.org (Crossref), https://doi.org/10.1186/s13023-018-0906-3 |
24 | GDF9 | Premature Ovarian Failure 14 | 早発卵巣不全14 | França, M. M., et al. “Identification of the First Homozygous 1‐bp Deletion in GDF9 Gene Leading to Primary Ovarian Insufficiency by Using Targeted Massively Parallel Sequencing.” Clinical Genetics, vol. 93, no. 2, Feb. 2018, pp. 408–11. DOI.org (Crossref), https://doi.org/10.1111/cge.13156. |
25 | GNAS | Mccune-Albright Syndrome | マッキューン・オルブライト症候群 | Agopiantz, M., Sorlin, A., Vabres, P., Leheup, B., Carmignac, V., Malaplate-Armand, C., ... & Gauchotte, G. (2021). Fertility in McCune Albright syndrome female: a case study focusing on AMH as a marker of ovarian dysfunction and a literature review. Journal of Gynecology Obstetrics and Human Reproduction, 50(9), 102171. |
26 | GNRH1 | Hypogonadotropic Hypogonadism 12 | 性腺刺激ホルモン分泌低下性性腺機能低下症12 | Bouligand, Jérôme, et al. “Isolated Familial Hypogonadotropic Hypogonadism and a GNRH1 Mutation.” New England Journal of Medicine, vol. 360, no. 26, June 2009, pp. 2742–48. DOI.org (Crossref), https://doi.org/10.1056/NEJMoa0900136 |
27 | GNRHR | Hypogonadotropic Hypogonadism 7 | 性腺刺激ホルモン分泌低下性性腺機能低下症7 | Shaw, Natalie D., et al. “Expanding the Phenotype and Genotype of Female GnRH Deficiency.” The Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 3, Mar. 2011, pp. E566–76. DOI.org (Crossref), https://doi.org/10.1210/jc.2010-2292. |
28 | HESX1 | Kallmann syndrome | カルマン症候群 | Newbern, Kayce, et al. “Identification of HESX1 Mutations in Kallmann Syndrome.” Fertility and Sterility, vol. 99, no. 7, June 2013, pp. 1831–37. DOI.org (Crossref), https://doi.org/10.1016/j.fertnstert.2013.01.149 |
29 | HS6ST1 | Hypogonadotropic Hypogonadism 15 | 性腺刺激ホルモン分泌低下性性腺機能低下症15 | Tornberg, Janne, et al. “Heparan Sulfate 6-O-Sulfotransferase 1 , a Gene Involved in Extracellular Sugar Modifications, Is Mutated in Patients with Idiopathic Hypogonadotrophic Hypogonadism.” Proceedings of the National Academy of Sciences, vol. 108, no. 28, July 2011, pp. 11524–29. DOI.org (Crossref), https://doi.org/10.1073/pnas.1102284108 |
30 | IL17RD | Kallmann Syndrome | カルマン症候群 | Miraoui, Hichem, et al. “Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism.” The American Journal of Human Genetics, vol. 92, no. 5, May 2013, pp. 725–43. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2013.04.008 |
31 | INS | Insulin Resistance; Polycystic ovary syndrome (PCOS) | インスリン抵抗性、多嚢胞性卵巣症候群(PCOS) | Lei, Ruobing, et al. “Advances in the Study of the Correlation between Insulin Resistance and Infertility.” Frontiers in Endocrinology, vol. 15, Jan. 2024, p. 1288326. DOI.org (Crossref), https://doi.org/10.3389/fendo.2024.1288326 |
32 | INSR | Polycystic ovary syndrome (PCOS) | 多嚢胞性卵巣症候群(PCOS) | Daghestani M. H. (2020). RS1799817 in INSR associates with susceptibility to polycystic ovary syndrome. Journal of medical biochemistry, 39(2), 149–159. https://doi.org/10.2478/jomb-2019-0023 |
33 | IRS1 | Polycystic ovary syndrome (PCOS) | 多嚢胞性卵巣症候群(PCOS) | Raad Helmi, Z., Nori, W., & Ghani Zghair, M. A. (2024). The Value IRS-1 rs1801278G> A Polymorphism Testing in Evaluating Infertile Women with Polycystic Ovarian Syndrome: A Case-control Study. Current Women's Health Reviews, 20(5), 98-107. |
34 | IRS2 | Polycystic ovarian syndrome (PCOS) | 多嚢胞性卵巣症候群(PCOS) | Shi, X., Xie, X., Jia, Y., & Li, S. (2016). Associations of insulin receptor and insulin receptor substrates genetic polymorphisms with polycystic ovary syndrome: A systematic review and meta-analysis. Journal of Obstetrics and Gynaecology Research, 42(7), 844–854. doi:10.1111/jog.13002 |
35 | KISS1 | Hypogonadotropic hypogonadism 13 | 性腺刺激ホルモン分泌低下性性腺機能低下症13 | Topaloglu, A. Kemal, et al. “Inactivating KISS1 Mutation and Hypogonadotropic Hypogonadism.” New England Journal of Medicine, vol. 366, no. 7, Feb. 2012, pp. 629–35. DOI.org (Crossref), https://doi.org/10.1056/NEJMoa1111184. |
36 | KISS1R | Hypogonadotropic hypogonadism 8 | 性腺刺激ホルモン分泌低下性性腺機能低下症8 | Teles, Milena Gurgel, et al. “A GPR54 -Activating Mutation in a Patient with Central Precocious Puberty.” New England Journal of Medicine, vol. 358, no. 7, Feb. 2008, pp. 709–15. DOI.org (Crossref), https://doi.org/10.1056/NEJMoa073443 |
37 | LHB | Hypogonadotropic hypogonadism 23 | 性腺刺激ホルモン分泌低下性性腺機能低下症23 | Arnhold, Ivo Jorge, et al. “Inactivating Mutations of Luteinizing Hormone β-Subunit or Luteinizing Hormone Receptor Cause Oligo-Amenorrhea and Infertility in Women.” Hormone Research in Paediatrics, vol. 71, no. 2, 2009, pp. 75–82. DOI.org (Crossref), https://doi.org/10.1159/000183895. |
38 | LHCGR | Luteinizing hormone resistance | 黄体形成ホルモン抵抗性 | Arnhold, Ivo Jorge, et al. “Inactivating Mutations of Luteinizing Hormone β-Subunit or Luteinizing Hormone Receptor Cause Oligo-Amenorrhea and Infertility in Women.” Hormone Research in Paediatrics, vol. 71, no. 2, 2009, pp. 75–82. DOI.org (Crossref), https://doi.org/10.1159/000183895. |
39 | NOBOX | Premature ovarian failure 5 | 早発卵巣不全5 | Bouilly, Justine, et al. “New NOBOX Mutations Identified in a Large Cohort of Women With Primary Ovarian Insufficiency Decrease KIT-L Expression.” The Journal of Clinical Endocrinology & Metabolism, vol. 100, no. 3, Mar. 2015, pp. 994–1001. DOI.org (Crossref), https://doi.org/10.1210/jc.2014-2761. |
40 | NR5A1 | Premature Ovarian Failure 7 | 早発卵巣不全7 | Jiao, Xue, et al. “Novel NR5A1 Missense Mutation in Premature Ovarian Failure: Detection in Han Chinese Indicates Causation in Different Ethnic Groups.” PLoS ONE, edited by Qing-Yuan Sun, vol. 8, no. 9, Sept. 2013, p. e74759. DOI.org (Crossref), https://doi.org/10.1371/journal.pone.0074759 |
41 | NSMF | Hypogonadotropic hypogonadism 9 | 性腺刺激ホルモン分泌低下性性腺機能低下症9 | Quaynor, Samuel D., et al. “The Prevalence of Digenic Mutations in Patients with Normosmic Hypogonadotropic Hypogonadism and Kallmann Syndrome.” Fertility and Sterility, vol. 96, no. 6, Dec. 2011, pp. 1424-1430.e6. DOI.org (Crossref), https://doi.org/10.1016/j.fertnstert.2011.09.046. |
42 | POF1B | Premature ovarian failure 2B | 早発卵巣不全2B | Lacombe, Arnaud, et al. “Disruption of POF1B Binding to Nonmuscle Actin Filaments Is Associated with Premature Ovarian Failure.” The American Journal of Human Genetics, vol. 79, no. 1, July 2006, pp. 113–19. DOI.org (Crossref), https://doi.org/10.1086/505406. |
43 | POLG | Non-syndromic Ovarian Dysfunction | 非症候群性卵巣機能障害 | Chen, B., et al. “Identification of the First Homozygous POLG Mutation Causing Non-Syndromic Ovarian Dysfunction.” Climacteric, vol. 21, no. 5, Sept. 2018, pp. 467–71. DOI.org (Crossref), https://doi.org/10.1080/13697137.2018.1467891. |
44 | PROK2 | Hypogonadotropic hypogonadism 4 | 性腺刺激ホルモン分泌低下性性腺機能低下症4 | Leroy, Chrystel, et al. “Biallelic Mutations in the Prokineticin-2 Gene in Two Sporadic Cases of Kallmann Syndrome.” European Journal of Human Genetics, vol. 16, no. 7, July 2008, pp. 865–68. DOI.org (Crossref), https://doi.org/10.1038/ejhg.2008.15 |
45 | PROKR2 | Hypogonadotropic hypogonadism 3 | 性腺刺激ホルモン分泌低下性性腺機能低下症3 | Dodé, Catherine, et al. “Kallmann Syndrome: Mutations in the Genes Encoding Prokineticin-2 and Prokineticin Receptor-2.” PLoS Genetics, edited by David Valle, vol. 2, no. 10, Oct. 2006, p. e175. DOI.org (Crossref), https://doi.org/10.1371/journal.pgen.0020175 |
46 | PSMC3IP | Ovarian dysgenesis 3 | 卵巣形成不全3 | Zangen, David, et al. “XX Ovarian Dysgenesis Is Caused by a PSMC3IP/HOP2 Mutation That Abolishes Coactivation of Estrogen-Driven Transcription.” The American Journal of Human Genetics, vol. 89, no. 4, Oct. 2011, pp. 572–79. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2011.09.006. |
47 | SEMA3A | Hypogonadotropic hypogonadism 16 | 性腺刺激ホルモン分泌低下性性腺機能低下症16 | Young, Jacques, et al. “SEMA3A Deletion in a Family with Kallmann Syndrome Validates the Role of Semaphorin 3A in Human Puberty and Olfactory System Development.” Human Reproduction, vol. 27, no. 5, May 2012, pp. 1460–65. DOI.org (Crossref), https://doi.org/10.1093/humrep/des022. |
48 | SPRY4 | Hypogonadotropic hypogonadism 17 | 性腺刺激ホルモン分泌低下性性腺機能低下症17 | Miraoui, Hichem, et al. “Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism.” The American Journal of Human Genetics, vol. 92, no. 5, May 2013, pp. 725–43. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2013.04.008 |
49 | STAG3 | Premature ovarian failure 8 | 早発卵巣不全8 | Caburet, Sandrine, et al. “Mutant Cohesin in Premature Ovarian Failure.” New England Journal of Medicine, vol. 370, no. 10, Mar. 2014, pp. 943–49. DOI.org (Crossref), https://doi.org/10.1056/NEJMoa1309635. |
50 | TAC3 | Hypogonadotropic Hypogonadism 7, 10 | 性腺刺激ホルモン分泌低下性性腺機能低下症7、10 | Topaloglu, A. Kemal, et al. “TAC3 and TACR3 Mutations in Familial Hypogonadotropic Hypogonadism Reveal a Key Role for Neurokinin B in the Central Control of Reproduction.” Nature Genetics, vol. 41, no. 3, Mar. 2009, pp. 354–58. DOI.org (Crossref), https://doi.org/10.1038/ng.306 |
51 | TACR3 | Hypogonadotropic Hypogonadism 7, 10 | 性腺刺激ホルモン分泌低下性性腺機能低下症7、10 | Topaloglu, A. Kemal, et al. “TAC3 and TACR3 Mutations in Familial Hypogonadotropic Hypogonadism Reveal a Key Role for Neurokinin B in the Central Control of Reproduction.” Nature Genetics, vol. 41, no. 3, Mar. 2009, pp. 354–58. DOI.org (Crossref), https://doi.org/10.1038/ng.306 |
52 | THADA | Polycystic ovarian syndrome (PCOS) | 多嚢胞性卵巣症候群(PCOS) | Naserpoor, L., Jannatifar, R., Roshanaei, K., Khoshandam, M., & Kallhor, N. (2022). Association of rs13429458 and rs12478601 Single Nucleotide Polymorphisms of THADA Gene with Polycystic Ovary Syndrome. International journal of fertility & sterility, 16(1), 36–41. https://doi.org/10.22074/IJFS.2021.524795.1090 |
53 | WDR11 | Kallmann syndrome | カルマン症候群 | Kim, Yeon‐Joo, et al. “WDR11‐mediated Hedgehog Signalling Defects Underlie a New Ciliopathy Related to Kallmann Syndrome.” EMBO Reports, vol. 19, no. 2, Feb. 2018, pp. 269–89. DOI.org (Crossref), https://doi.org/10.15252/embr.201744632. |
54 | WT1 | Premature Ovarian Failure (POF) | 早発卵巣不全(POF) | Jedidi, Ines, et al. “Autosomal Single-Gene Disorders Involved in Human Infertility.” Saudi Journal of Biological Sciences, vol. 25, no. 5, July 2018, pp. 881–87. DOI.org (Crossref), https://doi.org/10.1016/j.sjbs.2017.12.005. |
55 | ZP1 | Oocyte/zygote/embryo maturation arrest 1 | 卵母細胞/接合子/胚成熟停止1 | Huang, Hua-Lin, et al. “Mutant ZP1 in Familial Infertility.” New England Journal of Medicine, vol. 370, no. 13, Mar. 2014, pp. 1220–26. DOI.org (Crossref), https://doi.org/10.1056/NEJMoa1308851 |
s/n | 男性不妊症遺伝子パネル | Associated Reproductive Genetic Condition | 関連する生殖遺伝病 | 文献 |
---|---|---|---|---|
1 | ANOS1 | Kallmann Syndrome | カルマン症候群 | Balasubramanian, R., & Crowley, W. F., Jr (2007). Isolated Gonadotropin-Releasing Hormone (GnRH) Deficiency. In M. P. Adam (Eds.) et. al., GeneReviews®. University of Washington, Seattle. |
2 | AR | Androgen Insensitivity Syndrome | アンドロゲン不応性症候群 | Philibert, Pascal, et al. ‘Complete Androgen Insensitivity Syndrome Is Frequently Due to Premature Stop Codons in Exon 1 of the Androgen Receptor Gene: An International Collaborative Report of 13 New Mutations’. Fertility and Sterility, vol. 94, no. 2, July 2010, pp. 472–76. DOI.org (Crossref), https://doi.org/10.1016/j.fertnstert.2009.03.057. |
3 | AURKC | Macrozoospermia | 巨精子症 | Ben Khelifa, M., Zouari, R., Harbuz, R., Halouani, L., Arnoult, C., Lunardi, J., & Ray, P. F. (2011). A new AURKC mutation causing macrozoospermia: implications for human spermatogenesis and clinical diagnosis. Molecular human reproduction, 17(12), 762–768. https://doi.org/10.1093/molehr/gar050 |
4 | CATSPER1 | CATSPER1-Related Nonsyndromic Male Infertility | CATSPER1 関連の非症候性男性不妊症 | Jalalabadi, F. N., Cheraghi, E., Janatifar, R., & Momeni, H. R. (2024). The Detection of CatSper1 and CatSper3 Expression in Men with Normozoospermia and Asthenoteratozoospermia and Its Association with Sperm Parameters, Fertilization Rate, Embryo Quality. Reproductive sciences (Thousand Oaks, Calif.), 31(3), 704–713. https://doi.org/10.1007/s43032-023-01397-4 |
5 | CFTR | Congenital bilateral absence of the vas deferens | 先天性両側精管欠損症 | Cuppens, H., & Cassiman, J. J. (2004). CFTR mutations and polymorphisms in male infertility. International journal of andrology, 27(5), 251–256. https://doi.org/10.1111/j.1365-2605.2004.00485.x |
6 | CHD7 | Kallmann syndrome; CHARGE syndrome | カルマン症候群、CHARGE 症候群 | Jongmans, M. C. J., van Ravenswaaij‐Arts, C. M. A., Pitteloud, N., Ogata, T., Sato, N., Claahsen‐van der Grinten, H. L., ... & Hoefsloot, L. H. (2009). CHD7 mutations in patients initially diagnosed with Kallmann syndrome–the clinical overlap with CHARGE syndrome. Clinical genetics, 75(1), 65-71. |
7 | DAZL | Atypical Spermatogenesis | 非典型精子形成 | Nailwal, M., & Chauhan, J. B. (2017). In silico analysis of non-synonymous single nucleotide polymorphisms in human DAZL gene associated with male infertility. Systems Biology in Reproductive Medicine, 63(4), 248–258. https://doi.org/10.1080/19396368.2017.1305466 |
8 | DDX25 | Impaired Spermatogenesis | 精子形成障害 | Tsai‐Morris, Chon‐Hwa, et al. ‘Gonadotropin‐Regulated Testicular RNA Helicase (GRTH/DDX25): A Multifunctional Protein Essential for Spermatogenesis’. Journal of Andrology, vol. 31, no. 1, Jan. 2010, pp. 45–52. DOI.org (Crossref), https://doi.org/10.2164/jandrol.109.008219. |
9 | DUSP6 | Congenital Hypogonadotropic Hypogonadism | 先天性低ゴナドトロピン性性腺機能低下症 | Miraoui, H., Dwyer, A. A., Sykiotis, G. P., Plummer, L., Chung, W., Feng, B., ... & Pitteloud, N. (2013). Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. The American Journal of Human Genetics, 92(5), 725-743. |
10 | FEZF1 | Hypogonadotropic hypogonadism 22 | 低ゴナドトロピン性性腺機能低下症 22 | Kotan, L. Damla, et al. ‘Mutations in FEZF1 Cause Kallmann Syndrome’. The American Journal of Human Genetics, vol. 95, no. 3, Sept. 2014, pp. 326–31. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2014.08.006. |
11 | FGF8 | Hypogonadotropic hypogonadism 6 | 低ゴナドトロピン性性腺機能低下症 6 | Arauz, R. F., et al. ‘A Hypomorphic Allele in the FGF8 Gene Contributes to Holoprosencephaly and Is Allelic to Gonadotropin-Releasing Hormone Deficiency in Humans’. Molecular Syndromology, vol. 1, no. 2, 2010, pp. 59–66. DOI.org (Crossref), https://doi.org/10.1159/000302285. |
12 | FGF17 | Hypogonadotropic Hypogonadism; Kallmann Syndrome | 低ゴナドトロピン性性腺機能低下症カルマン症候群 | Amato, Lorena Guimaraes Lima, et al. ‘New Genetic Findings in a Large Cohort of Congenital Hypogonadotropic Hypogonadism’. European Journal of Endocrinology, vol. 181, no. 2, Aug. 2019, pp. 103–19. DOI.org (Crossref), https://doi.org/10.1530/EJE-18-0764 |
13 | FGFR1 | Hypogonadotropic hypogonadism 2 | 低ゴナドトロピン性性腺機能低下症 2 | Simonis, Nicolas, et al. ‘FGFR1 Mutations Cause Hartsfield Syndrome, the Unique Association of Holoprosencephaly and Ectrodactyly’. Journal of Medical Genetics, vol. 50, no. 9, Sept. 2013, pp. 585–92. DOI.org (Crossref), https://doi.org/10.1136/jmedgenet-2013-101603 |
14 | FLRT3 | Hypogonadotropic hypogonadism 21 | 低ゴナドトロピン性性腺機能低下症 21 | Miraoui, Hichem, et al. ‘Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism’. The American Journal of Human Genetics, vol. 92, no. 5, May 2013, pp. 725–43. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2013.04.008 |
15 | FMR1 | Fragile X Syndrome | 脆弱X症候群 | Gu, F., Zhang, H.-Y., Hu, S.-Y., Huang, S.-Z., Ma, X., & Zhang, Y.-Q. (2006). Erectile dysfunction in Fragile X patients. Asian Journal of Andrology, 8(4), 483–487. doi:10.1111/j.1745-7262.2006.00156.x |
16 | FSHB | Hypogonadotropic hypogonadism 24 | 低ゴナドトロピン性性腺機能低下症 24 | Lofrano-Porto, Adriana, et al. ‘Effects of Follicle-Stimulating Hormone and Human Chorionic Gonadotropin on Gonadal Steroidogenesis in Two Siblings with a Follicle-Stimulating Hormone β Subunit Mutation’. Fertility and Sterility, vol. 90, no. 4, Oct. 2008, pp. 1169–74. DOI.org (Crossref), https://doi.org/10.1016/j.fertnstert.2007.07.1356. |
17 | FSHR | DNA fragmentation in sperm | 精子のDNA断片化 | Zhylkova, I., Feskov, O., & Fedota, O. (2016). FSHR gene polymorphisms causes male infertility. Open Journal of Genetics, 6(1), 1-8. |
18 | GNRH1 | Hypogonadotropic hypogonadism 12 | 低ゴナドトロピン性性腺機能低下症 12 | Chan, Yee-Ming. ‘A Needle in a Haystack: Mutations in GNRH1 as a Rare Cause of Isolated GnRH Deficiency’. Molecular and Cellular Endocrinology, vol. 346, no. 1–2, Oct. 2011, pp. 51–56. DOI.org (Crossref), https://doi.org/10.1016/j.mce.2011.06.013. |
19 | GNRHR | Hypogonadotropic Hypogonadism 7, 23 | 低ゴナドトロピン性性腺機能低下症 7, 23 | Stewart, M. David, et al. ‘Mice Harboring Gnrhr E90K, a Mutation That Causes Protein Misfolding and Hypogonadotropic Hypogonadism in Humans, Exhibit Testis Size Reduction and Ovulation Failure’. Molecular Endocrinology, vol. 26, no. 11, Nov. 2012, pp. 1847–56. DOI.org (Crossref), https://doi.org/10.1210/me.2012-1072 |
20 | HESX1 | Kallmann syndrome | カルマン症候群 | Newbern, Kayce, et al. ‘Identification of HESX1 Mutations in Kallmann Syndrome’. Fertility and Sterility, vol. 99, no. 7, June 2013, pp. 1831–37. DOI.org (Crossref), https://doi.org/10.1016/j.fertnstert.2013.01.149. |
21 | HS6ST1 | Hypogonadotropic hypogonadism 15 | 低ゴナドトロピン性性腺機能低下症 15 | Tornberg, Janne, et al. ‘Heparan Sulfate 6-O-Sulfotransferase 1 , a Gene Involved in Extracellular Sugar Modifications, Is Mutated in Patients with Idiopathic Hypogonadotrophic Hypogonadism’. Proceedings of the National Academy of Sciences, vol. 108, no. 28, July 2011, pp. 11524–29. DOI.org (Crossref), https://doi.org/10.1073/pnas.1102284108 |
22 | IL17RD | Kallmann Syndrome | 「カルマン症候群」 | Miraoui, Hichem, et al. ‘Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism’. The American Journal of Human Genetics, vol. 92, no. 5, May 2013, pp. 725–43. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2013.04.008 |
23 | KISS1 | Hypogonadotropic hypogonadism 13 | 低ゴナドトロピン性性腺機能低下症 13 | Topaloglu, A. Kemal, et al. ‘Inactivating KISS1 Mutation and Hypogonadotropic Hypogonadism’. New England Journal of Medicine, vol. 366, no. 7, Feb. 2012, pp. 629–35. DOI.org (Crossref), https://doi.org/10.1056/NEJMoa1111184 |
24 | KISS1R | Hypogonadotropic Hypogonadism 8 | 低ゴナドトロピン性性腺機能低下症 8 | Teles, Milena Gurgel, et al. ‘A GPR54 -Activating Mutation in a Patient with Central Precocious Puberty’. New England Journal of Medicine, vol. 358, no. 7, Feb. 2008, pp. 709–15. DOI.org (Crossref), https://doi.org/10.1056/NEJMoa073443. |
25 | LHB | Hypogonadotropic hypogonadism 23 | 低ゴナドトロピン性性腺機能低下症 23 | Basciani, Sabrina, et al. ‘Hypogonadism in a Patient with Two Novel Mutations of the Luteinizing Hormone β-Subunit Gene Expressed in a Compound Heterozygous Form’. The Journal of Clinical Endocrinology & Metabolism, vol. 97, no. 9, Sept. 2012, pp. 3031–38. DOI.org (Crossref), https://doi.org/10.1210/jc.2012-1986 |
26 | LHCGR | Familial Male-Limited Precocious Puberty | 家族性男性限定性早発思春期 | Latronico, Ana, and Ivo Arnhold. ‘Inactivating Mutations of the Human Luteinizing Hormone Receptor in Both Sexes’. Seminars in Reproductive Medicine, vol. 30, no. 05, Oct. 2012, pp. 382–86. DOI.org (Crossref), https://doi.org/10.1055/s-0032-1324721 |
27 | NR5A1 | Gonadal Dysgenesis | 性腺形成不全 | Werner, Ralf, et al. ‘New NR5A1 Mutations and Phenotypic Variations of Gonadal Dysgenesis’. PLOS ONE, edited by Daniel J. Bernard, vol. 12, no. 5, May 2017, p. e0176720. DOI.org (Crossref), https://doi.org/10.1371/journal.pone.0176720. |
28 | NSMF | Hypogonadotropic hypogonadism 9 | 低ゴナドトロピン性性腺機能低下症 9 | Xu, Ning, et al. ‘Nasal Embryonic LHRH Factor (NELF) Mutations in Patients with Normosmic Hypogonadotropic Hypogonadism and Kallmann Syndrome’. Fertility and Sterility, vol. 95, no. 5, Apr. 2011, pp. 1613-1620.e7. DOI.org (Crossref), https://doi.org/10.1016/j.fertnstert.2011.01.010. |
29 | PRM1 | Dysfunctional Spermatogenesis | 機能不全精子形成 | Nemati, H., Sadeghi, M., Nazeri, M. et al. Evaluation of the association between polymorphisms of PRM1 and PRM2 and the risk of male infertility: a systematic review, meta-analysis, and meta-regression. Sci Rep 10, 17228 (2020). https://doi.org/10.1038/s41598-020-74233-3 |
30 | PROK2 | Kallmann Syndrome; Hypogonadotropic hypogonadism 4 | カルマン症候群; 低ゴナドトロピン性性腺機能低下症 4 | Pitteloud, Nelly, et al. ‘Loss-of-Function Mutation in the Prokineticin 2 Gene Causes Kallmann Syndrome and Normosmic Idiopathic Hypogonadotropic Hypogonadism’. Proceedings of the National Academy of Sciences, vol. 104, no. 44, Oct. 2007, pp. 17447–52. DOI.org (Crossref), https://doi.org/10.1073/pnas.0707173104 |
31 | PROKR2 | Kallmann Syndrome; Hypogonadotropic hypogonadism 3 | カルマン症候群;低ゴナドトロピン性性腺機能低下症 3 | Dodé, Catherine, et al. ‘Kallmann Syndrome: Mutations in the Genes Encoding Prokineticin-2 and Prokineticin Receptor-2’. PLoS Genetics, edited by David Valle, vol. 2, no. 10, Oct. 2006, p. e175. DOI.org (Crossref), https://doi.org/10.1371/journal.pgen.0020175. |
32 | SEMA3A | Hypogonadotropic hypogonadism 16 | 低ゴナドトロピン性性腺機能低下症 16 | Young, Jacques, et al. ‘SEMA3A Deletion in a Family with Kallmann Syndrome Validates the Role of Semaphorin 3A in Human Puberty and Olfactory System Development’. Human Reproduction, vol. 27, no. 5, May 2012, pp. 1460–65. DOI.org (Crossref), https://doi.org/10.1093/humrep/des022. |
33 | SPRY4 | Hypogonadotropic hypogonadism 17 | 低ゴナドトロピン性性腺機能低下症 17 | Miraoui, Hichem, et al. ‘Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism’. The American Journal of Human Genetics, vol. 92, no. 5, May 2013, pp. 725–43. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2013.04.008. |
34 | SRD5A1 | Prostatic underdevelopment | 前立腺発育不全 | Dubey, A. (2012). Infertility Diagnosis, Management and IVF. JP Medical Ltd., Page 134 |
35 | SRY | 46,XX Testicular Disorder Of Sex Development; Swyer Syndrome | 46,XX 精巣性発達障害; スワイヤー症候群 | Délot, E. C., & Vilain, E. J. (2003). Nonsyndromic 46,XX Testicular Disorders/Differences of Sex Development. In M. P. Adam (Eds.) et. al., GeneReviews®. University of Washington, Seattle. |
36 | TAC3 | Hypogonadotropic Hypogonadism 7, 10 | 低ゴナドトロピン性性腺機能低下症 7, 10 | Gianetti, Elena, et al. ‘TAC3/TACR3 Mutations Reveal Preferential Activation of Gonadotropin-Releasing Hormone Release by Neurokinin B in Neonatal Life Followed by Reversal in Adulthood’. The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 6, June 2010, pp. 2857–67. DOI.org (Crossref), https://doi.org/10.1210/jc.2009-2320. |
37 | TACR3 | Hypogonadotropic Hypogonadism 7, 11 | 低ゴナドトロピン性性腺機能低下症 7, 11 | Gianetti, Elena, et al. ‘TAC3/TACR3 Mutations Reveal Preferential Activation of Gonadotropin-Releasing Hormone Release by Neurokinin B in Neonatal Life Followed by Reversal in Adulthood’. The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 6, June 2010, pp. 2857–67. DOI.org (Crossref), https://doi.org/10.1210/jc.2009-2320. |
38 | USP26 | Asthenoteratozoospermia | 無力奇形精子症 | Liu, Chunyu, et al. ‘Deficiency of Primate-Specific SSX1 Induced Asthenoteratozoospermia in Infertile Men and Cynomolgus Monkey and Tree Shrew Models’. The American Journal of Human Genetics, vol. 110, no. 3, Mar. 2023, pp. 516–30. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2023.01.016. |
39 | USP9Y | Spermatogenic failure | 精子形成不全 | Foresta, C. ‘Deletion and Expression Analysis of AZFa Genes on the Human Y Chromosome Revealed a Major Role for DBY in Male Infertility’. Human Molecular Genetics, vol. 9, no. 8, May 2000, pp. 1161–69. DOI.org (Crossref), https://doi.org/10.1093/hmg/9.8.1161. |
40 | WDR11 | Kallmann syndrome; Hypogonadotropic Hypogonadism 14 | カルマン症候群; 低ゴナドトロピン性性腺機能低下症 14 | Kim, Hyung-Goo, et al. ‘WDR11, a WD Protein That Interacts with Transcription Factor EMX1, Is Mutated in Idiopathic Hypogonadotropic Hypogonadism and Kallmann Syndrome’. The American Journal of Human Genetics, vol. 87, no. 4, Oct. 2010, pp. 465–79. DOI.org (Crossref), https://doi.org/10.1016/j.ajhg.2010.08.018. |
参考文献
- Taylor A. (2003). ABC of subfertility: extent of the problem. BMJ (Clinical research ed.), 327(7412), 434–436. doi: 10.1136/bmj.327.7412.434
- Yatsenko, Svetlana A., and Aleksandar Rajkovic. ‘Genetics of Human Female Infertility†’. Biology of Reproduction, vol. 101, no. 3, Sept. 2019, pp. 549–66. DOI.org (Crossref), https://doi.org/10.1093/biolre/ioz084.
- Chihara, M., Yoshihara, K., Ishiguro, T., Yokota, Y., Adachi, S., Okada, H., Kashima, K., Sato, T., Tanaka, A., Tanaka, K., & Enomoto, T. (2015). Susceptibility to male infertility: replication study in Japanese men looking for an association with four GWAS-derived loci identified in European men. Journal of assisted reproduction and genetics, 32(6), 903–908. doi: 10.1007/s10815-015-0468-4
- Krausz, Csilla. ‘Male Infertility: Pathogenesis and Clinical Diagnosis’. Best Practice & Research Clinical Endocrinology & Metabolism, vol. 25, no. 2, Apr. 2011, pp. 271–85. DOI.org (Crossref), doi: 10.1016/j.beem.2010.08.006.
- Carrier Screening for Genetic Conditions. https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2017/03/carrier-screening-for-genetic-conditions.
- Girardi, Guillermina, et al. “The Complement System in the Pathophysiology of Pregnancy.” Molecular Immunology, vol. 43, no. 1–2, Jan. 2006, pp. 68–77. DOI.org (Crossref), https://doi.org/10.1016/j.molimm.2005.06.017.
- Talbot, Laura, and Kirsty Maclennan. “Physiology of Pregnancy.” Anaesthesia & Intensive Care Medicine, vol. 17, no. 7, July 2016, pp. 341–45. DOI.org (Crossref), https://doi.org/10.1016/j.mpaic.2016.04.010.
- Lee, S. R., Lee, T. H., Song, S. H., Kim, D. S., Choi, K. H., Lee, J. H., & Kim, D. K. (2021). Update on genetic screening and treatment for infertile men with genetic disorders in the era of assisted reproductive technology. Clinical and experimental reproductive medicine, 48(4), 283–294. doi: 10.5653/cerm.2021.04476
- Schlegel PN, Sigman M, Collura B, De Jonge CJ, Eisenberg ML, Lamb DJ, et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I. Fertil Steril. 2021;115:54–61. doi: 10.1016/j.fertnstert.2020.11.015.
- Jungwirth A, Giwercman A, Tournaye H, Diemer T, Kopa Z, Dohle G, et al. European Association of Urology guidelines on male infertility: the 2012 update. Eur Urol. 2012;62:324–32. doi: 10.1016/j.eururo.2012.04.048.